
Dispersive Möbius Transform Finite Element Time Domain Method on

Graphics Processing Units

David Abraham1, and Dennis D. Giannacopoulos1, Senior Member, IEEE

1Department of Electrical & Computer Engineering, McGill University, Montréal, QC H3A 0E9 Canada

david.abraham@mail.mcgill.ca, dennis.giannacopoulos@mcgill.ca

We demonstrate the novel use of graphics processing units (GPUs) in accelerating dispersive finite element time domain (FETD)

methods based upon the Möbius (bilinear) z-transform technique. By utilizing the immense computational potential of modern GPUs

via NVIDIA’s Compute Unified Device Architecture (CUDA) language, we are able to diminish the gap between dispersive FETD

methods and their non-dispersive counterparts, facilitating the study of a wider range of physical phenomena. Our analyses indicate that

the amount of performance gain achieved is directly related not only to the number of variables, but also to the amount of dispersive

material present in the problem, with very large majoritarily dispersive problems seeing the most improvement.

Index Terms—Dispersive media, Finite element time domain method, Graphics processing unit, Parallel processing.

I. INTRODUCTION

VER THE PAST several years, three principle extensions to

the finite element time domain (FETD) method have been

proposed in order to accommodate the effects of dispersive

media within electromagnetics simulations: recursive

convolution, auxiliary differential equation, and Möbius z-

transform [1]-[2]. While these methods have all succeeded in

incorporating dispersive effects, the Möbius z-transform

technique is, in general, more efficient and more versatile.

However, owing to their additional complexity, dispersive

FETD methods have remained naturally slower than their non-

dispersive counterparts.

In this paper we seek to narrow the performance gap between

dispersive and traditional FETD computations by investigating

the use of Graphics Processing Units (GPUs) and their

massively parallel architectures. While many aspects of the

standard FETD algorithm have already seen GPU

implementations [3], little work has been done in addressing the

additional complexity inherited by FETD methods due to the

presence of dispersion. Our innovation, then, is to isolate and

accelerate the additional overhead imposed specifically by the

dispersive elements. As such, the results obtained herein can be

easily coupled to existing GPU implementations of FETD

methods, for even greater computational efficiency.

In doing so, we hope to render dispersive computations

marginally more expensive than their traditional counterparts,

allowing for a more accurate characterization of physical

phenomena, without the debilitating overhead.

II. THE MÖBIUS (BILINEAR) TRANSFORM METHOD

The bilinear transform method builds upon the standard

FETD formulation for the second order vector wave equation,

discretized via the Newmark-β scheme [4]. The inclusion of

dispersion necessitates the introduction of convolutions

between the fields and the material parameters within the FETD

equations. However, we can transform the material’s dispersive

model to the z-domain by using a bilinear transform of the form:

𝑗𝜔 = 𝑠 →
2

Δ𝑡

1−𝑧−1

1+𝑧−1 . (1)

In which Δ𝑡 is the discrete time step used in our Newmark-β

scheme. Inserting the transformed version of the dispersive

model into the standard FETD equations and making use of the

convolution and time shifting properties of the z-transform

allows us to obtain a set of auxiliary variables and update

equations for the permittivity as follows:

{ℒ𝜀}𝑛 = 𝑐0[ℳ]{𝐸}𝑛 + {𝑊1}𝑛−1 (2)

{𝑊𝛼}𝑛 = 𝑐𝛼{𝐸}𝑛 − 𝑑𝛼{ℒ𝜀}𝑛 + {𝑊𝛼+1}𝑛−1 ; 𝛼 = 1, ⋯ , 𝑝 − 1

 {𝑊𝛼}𝑛 = 𝑐𝛼{𝐸}𝑛 − 𝑑𝛼{ℒ𝜀}𝑛 ; 𝛼 = 𝑝

Where 𝑐𝛼 and 𝑑𝛼 are constants associated with the medium’s

electrically dispersive model, [ℳ] is the mass matrix, {𝐸} is the

electric field strength vector, 𝑝 is the order of dispersion and

lastly, {ℒ𝜀} and {𝑊𝛼} are the auxiliary variables in question.

Similar equations are likewise defined for the magnetic flux

density and permeability. See [2] for a full treatment.

 By including a combination of these auxiliary variables on

the right-hand-side of the FETD update equation, the dispersion

can be accurately modelled. As such, the overhead inherent to

modelling the dispersion is tantamount to applying the updates

(2) to the auxiliary variables in each time step of the solution

process. It is these operations we now seek to parallelize.

III. PARALLELIZATION STRATEGY

Given that the update equations in (2) are composed entirely

of matrix multiplications, vector scaling and vector addition,

they are ideally suited to parallelization, since they contain

many independent calculations. The Compute Unified Device

Architecture (CUDA) language introduced by NVIDIA

operates on the Single Instruction Multiple Thread (SIMT)

O

principle and is therefore aptly equipped for handling these

types of operations, as each thread running on the GPU handles

the computation of one element of the auxiliary vector, via

identical operations on different data [5].

However, seeing as how the GPU and the host device do not

share the same physical memory, it is necessary to transfer data

between the two, resulting in additional overhead. From (2), it

is clear that in order to obtain {ℒ𝜀}𝑛+1 and {𝑊𝛼}𝑛+1, we require

knowledge of {𝐸}𝑛+1 upon each iteration. The mass matrix and

constants will equally need to be transferred, but only once,

before iterations begin, since they are invariant quantities. The

algorithm within a single time step would then have the form as

seen in Fig. 1, in which {𝐴𝑢𝑥} is the combination of auxiliary

variables required to augment the FETD equations.

Fig.1. Pseudocode to update the auxiliary variables on the GPU.

IV. RESULTS

We now present preliminary results gathered using the above

approach. The problem under consideration is a parallel plate

waveguide with dimensions 20 cm by 4 cm, excited in the TEM

mode, with first order absorbing boundary conditions at each

end. A 4 cm doubly dispersive 4th order dielectric slab is present,

such that the total amount of dispersive material varies between

25% and 90% of the total volume. All computations have been

performed on a notebook computer running Windows 7 Home

Premium edition, equipped with an Intel i7 Q740 CPU clocked

at 1.73 GHz, with 4 GB RAM. The GPU is the main display

card, an NVIDIA GeForce 310M with 16 CUDA cores.

In order to first put into perspective the significance of the

dispersive overhead, we present Table 1 in which the percent of

total execution time spent updating the auxiliary variables is

reported as a function of the amount of dispersive material

present and problem size, for 6000 time steps.

TABLE I

DISPERSIVE OVERHEAD AS A PERCENT OF TOTAL COMPUTATION TIME

Number of
Variables

Proportion of Dispersive Material

25 % 50 % 75 % 90 %

23840 13.0 % 22.2 % 28.5 % 31.8 %

95680 10.5 % 17.7 % 23.2 % 25.6 %

383360 9.1 % 21.7 % 27.6 % 30.9 %

All code has been compiled using Visual Studio 2013

Ultimate edition and the NVIDIA NSIGHT plugin. Each code

was run 10 times and the execution times averaged. Fig. 2

demonstrates the speedup achieved in updating the auxiliary

variables during time stepping, including memory transfer

overheads of {𝐸} and {𝐴𝑢𝑥}, for 3 different sized problems.

Fig. 2. Performance gain as a function of problem size and dispersiveness.

It is clear that for small problems containing little dispersive

material, the GPU is not an efficient option due to the memory

transfer overhead and may actually perform worse. However,

as the amount of dispersive material increases, the number of

operations required also increases, while memory overhead

remains constant, improving efficiency. Lastly, as the number

of variables grows the GPU has more data to work with,

resulting in a greater use of the GPU’s resources and better

performance.

V. CONCLUSION

In conclusion, it has been demonstrated that GPUs have an

excellent potential to diminish the performance gap which

exists between dispersive and non-dispersive simulations.

Given that good results were obtained with a relatively low

power GPU (modern GPUs can contain many thousand

CUDA cores), we are confident that very large improvements

could be achieved on more modern hardware. Lastly, if this

method were to be incorporated into an existing GPU FETD

method, the performance would increase yet again, as memory

transfer overheads could be removed from each iteration.

REFERENCES

[1] F. L. Teixeira, “Time-Domain Finite-Difference and Finite-Element
Methods for Maxwell Equations in Complex Media,” IEEE Trans. Anten-

nas Propag., vol. 56, no. 8, pp. 2150-2166, Aug. 2008.

[2] A. Akbarzadeh-Sharbaf, D. D. Giannacopoulos, “A Stable and Efficient
Direct Time Integration of the Vector Wave Equation in the Finite-Ele-

ment Time-Domain Method for Dispersive Media,” IEEE Trans. Anten-

nas Propag., vol. 63, no. 1, pp. 314-321, Jan. 2015.
[3] H.-T. Meng, B.-L. Nie, S. Wong, C. Macon, J.-M. Jin, “GPU accelerated

finite-element computation for electromagnetic analysis,” IEEE Antennas
Propagat. Mag., vol. 56, no. 2, pp. 39-62, Apr. 2014.

[4] J. Jin, “Finite Element Analysis in the Time Domain,” in The Finite Ele-

ment Method in Electromagnetics, 2nd ed. New York: Wiley-IEEE, 2002,
ch. 12.

[5] N. Bell, M. Garland, “Efficient Sparse Matrix-Vector Multiplication on

CUDA,” NVIDIA Corp., Santa Clara, CA, Tech. Rep. NVR-2008-004,
Dec. 2008.

0

0.5

1

1.5

2

2.5

3

3.5

20 30 40 50 60 70 80 90 100

Sp
e

e
d

 U
p

 F
ac

to
r

Proportion of Dispersive Material (%)

23840 95680 383360

(…) // Compute {E}n+1
cudaMemcpy // Transfer {E}n+1 from host to GPU
<<< Kernel >>> // Update auxiliary variables
{
 id = thread #;
 ℒ𝜀

𝑛+1(𝑖𝑑) = 𝑐0ℳ(𝑖𝑑, :){𝐸}𝑛+1 + 𝑊1
𝑛(𝑖𝑑);

 (…)
}
cudaMemcpy // Transfer {Aux}n+1 from GPU to host

